Linear Algebra essay

HomeFree EssaysSchoolLinear AlgebraBuy Custom Essay
← Prayer in Public SchoolsAlgorithm →

Linear Algebra. Custom Linear Algebra Essay Writing Service || Linear Algebra Essay samples, help

a)Find c[Ta]c

The matrix A is =

[ 1  5  5]

[ 0  2  7]

[ 2  1 11]

. We find the matrix Ta=AT which is the transposed matrix of A

Dimensions of matrix A are 3 x 3 thus the size of the matrix Ta will also be 3 x 3.

We find the elements of the matrix Ta to be:

c1 1 = a1 1 = 1;

c2 1 = a1 2 = 5;

c3 1 = a1 3 = 5;

c1 2 = a2 1 = 0;

c2 2 = a2 2 = 2;

c3 2 = a2 3 = 7;

c1 3 = a3 1 = 2;

c2 3 = a3 2 = 1;

c3 3 = a3 3 = 11;

 

So, Ta =

[ 1  0  2]

[ 5  2  1]

[ 5  7 11]

This is the transpose, Ta.

Therefore c(Ta)c where c=   1   0   0

                                        0   1   0

                                        0   0   1

We first get the product of c and Ta after which we will then multiply by matrix c once more.

Product c*Ta will yield,        1  0  0      1   0   2

                                       0  1  0      5   2   1

                                       0  0  1      5   7   11

 

The first matrix is a 3*3 matrix and the second one is also a 3*3 thus the answer should also be a 3*3 matrix. Therefore multiplying the first row of the first row of the first matrix by the first column of the second matrix and so on, we get the product is

                 

                       (1*1)+(0*5)+(0*5)     (1*0)+(0*2)+(0*7)     (1*2)+(0*1)+(0*11)

                       (0*1)+(1*5)+(0*5)     (0*0)+(1*2)+(0*7      (0*2)+(1*1)+(0*11)

                       (0*1)+(0*5)+(1*5)     (0*0)+(0*2)+(1*7)      (0*2)+(0*1)+(1*11)

 This will be equal to,  1  0    2         multiplying this by c= 1  0  0 we get the final answer as

                                     5   2   1                                             0  1   0

                                     5   7  11                                            0  0   1

                       (1*1)+(0*5)+(0*5)     (1*0)+(0*2)+(0*7)     (1*2)+(0*1)+(0*11)

                       (0*1)+(1*5)+(0*5)     (0*0)+(1*2)+(0*7      (0*2)+(1*1)+(0*11)

                       (0*1)+(0*5)+(1*5)     (0*0)+(0*2)+(1*7)      (0*2)+(0*1)+(1*11)

 Thereforec(Ta)c will be, 1  0   2

                                          5   2   1

                                          5   7   11

b) Find c[Ta]b

 Ta is the transpose of A which is obtained as

The matrix A is =

[ 1  5  5]

[ 0  2  7]

[ 2  1 11]

. We find the matrix C=AT which is the transposed matrix A

Dimensions of matrix A are 3 x 3 thus the size of the matrix Ta is also 3 x 3.

We find the elements of the matrix Ta to be:

c1 1 = a1 1 = 1;

c2 1 = a1 2 = 5;

c3 1 = a1 3 = 5;

c1 2 = a2 1 = 0;

c2 2 = a2 2 = 2;

c3 2 = a2 3 = 7;

c1 3 = a3 1 = 2;

c2 3 = a3 2 = 1;

c3 3 = a3 3 = 11;

 

 

 

So, Ta =

 

[ 1  0  2]

[ 5  2  1]

[ 5  7 11]

This is the transpose, Ta.

The product c[Ta]b will be obtained by:

Multiplying c by Ta first we get, we know that c=  1   0   0   and Ta= 1   0   2

                                                                                  0   1   0                 5   2   1

                                                                                  0   0   1                 5   7   11

This product will be:

The first matrix is a 3*3 matrix and the second one is also a 3*3 thus the answer should also be a 3*3 matrix. Therefore multiplying the first row of the first matrix by the first column of the second matrix and so on, we get the product will be

                       (1*1)+(0*5)+(0*5)     (1*0)+(0*2)+(0*7)     (1*2)+(0*1)+(0*11)

                       (0*1)+(1*5)+(0*5)     (0*0)+(1*2)+(0*7      (0*2)+(1*1)+(0*11)

                       (0*1)+(0*5)+(1*5)     (0*0)+(0*2)+(1*7)      (0*2)+(0*1)+(1*11)

        =       1  0   2   then multiplying this by matrix b=  2   1   1

                  5   2   1                                                           1  2   1

                  5   7   11                                                         1   1   2

 

The product yields: 

(2*1)+(1*5)+(1*5)    (2*0)+(1*2)+(1*7)   (2*2)+(1*1)+(1*11)

(1*1)+(2*5)+(1*5)     (1*0)+(2*2)+(1*7)   (1*2)+(2*1)+(1*11)

(1*1)+(1*5)+(2*5)      (1*0)+(1*2)+(2*7)   (1*2)+(1*1)+(2*11)

 Therefore c[Ta]b will be;   12    9     16

                                       16   11    15

                                       16    16   25

Linear Algebra. Custom Linear Algebra Essay Writing Service || Linear Algebra Essay samples, help

Order Now
Order nowhesitating

Related essays

  1. Algorithm
  2. Second Language at School
  3. Prayer in Public Schools
  4. An Evaluation of the Taking Charge Group Intervention
Order now